Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Viruses ; 15(4)2023 04 19.
Artigo em Inglês | MEDLINE | ID: covidwho-2293805

RESUMO

Since December 2019, the world has been experiencing the COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we now face the emergence of several variants. We aimed to assess the differences between the wild-type (Wt) (Wuhan) strain and the P.1 (Gamma) and Delta variants using infected K18-hACE2 mice. The clinical manifestations, behavior, virus load, pulmonary capacity, and histopathological alterations were analyzed. The P.1-infected mice showed weight loss and more severe clinical manifestations of COVID-19 than the Wt and Delta-infected mice. The respiratory capacity was reduced in the P.1-infected mice compared to the other groups. Pulmonary histological findings demonstrated that a more aggressive disease was generated by the P.1 and Delta variants compared to the Wt strain of the virus. The quantification of the SARS-CoV-2 viral copies varied greatly among the infected mice although it was higher in P.1-infected mice on the day of death. Our data revealed that K18-hACE2 mice infected with the P.1 variant develop a more severe infectious disease than those infected with the other variants, despite the significant heterogeneity among the mice.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Camundongos Transgênicos , Pandemias , SARS-CoV-2/genética , Virulência
2.
Viruses ; 15(2)2023 01 19.
Artigo em Inglês | MEDLINE | ID: covidwho-2270162

RESUMO

BACKGROUND: In 2019, the world witnessed the onset of an unprecedented pandemic. By February 2022, the infection by SARS-CoV-2 has already been responsible for the death of more than 5 million people worldwide. Recently, we and other groups discovered that SARS-CoV-2 infection induces ER stress and activation of the unfolded protein response (UPR) pathway. Degradation of misfolded/unfolded proteins is an essential element of proteostasis and occurs mainly in lysosomes or proteasomes. The N-terminal arginylation of proteins is characterized as an inducer of ubiquitination and proteasomal degradation by the N-degron pathway. RESULTS: The role of protein arginylation during SARS-CoV-2 infection was elucidated. Protein arginylation was studied in Vero CCL-81, macrophage-like THP1, and Calu-3 cells infected at different times. A reanalysis of in vivo and in vitro public omics data combined with immunoblotting was performed to measure levels of arginyl-tRNA-protein transferase (ATE1) and its substrates. Dysregulation of the N-degron pathway was specifically identified during coronavirus infections compared to other respiratory viruses. We demonstrated that during SARS-CoV-2 infection, there is an increase in ATE1 expression in Calu-3 and Vero CCL-81 cells. On the other hand, infected macrophages showed no enzyme regulation. ATE1 and protein arginylation was variant-dependent, as shown using P1 and P2 viral variants and HEK 293T cells transfection with the spike protein and receptor-binding domains (RBD). In addition, we report that ATE1 inhibitors, tannic acid and merbromine (MER) reduce viral load. This finding was confirmed in ATE1-silenced cells. CONCLUSIONS: We demonstrate that ATE1 is increased during SARS-CoV-2 infection and its inhibition has potential therapeutic value.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Proteólise , Complexo de Endopeptidases do Proteassoma , Células HEK293
3.
Commun Biol ; 5(1): 805, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1991680

RESUMO

SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, facilitating cleavage of the viral polypeptide chain, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to support coronaviruses in evading the host's innate immune responses. We identified three phenolic compounds bound to PLpro, preventing essential molecular interactions to ISG15 by screening a natural compound library. The compounds identified by X-ray screening and complexed to PLpro demonstrate clear inhibition of PLpro in a deISGylation activity assay. Two compounds exhibit distinct antiviral activity in Vero cell line assays and one inhibited a cytopathic effect in non-cytotoxic concentration ranges. In the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Sítio Alostérico , Antivirais/farmacologia , Proteases Semelhantes à Papaína de Coronavírus , Humanos , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , SARS-CoV-2
4.
ACS Appl Bio Mater ; 5(7): 3371-3383, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1900419

RESUMO

COVID-19 has resulted in more than 490 million people being infected worldwide, with over 6 million deaths by April 05th, 2022. Even though the development of safe vaccine options is an important step to reduce viral transmission and disease progression, COVID-19 cases will continue to occur, and for those cases, efficient treatment remains to be developed. Here, a drug repurposing strategy using nanotechnology is explored to develop a therapy for COVID-19 treatment. Nanoparticles (NPs) based on PLGA for fingolimod (FTY720) encapsulation show a size of ∼150 nm and high drug entrapment (∼90%). The NP (NP@FTY720) can control FTY720 release in a pH-dependent manner. Cytotoxicity assays using different cell lines show that NP@FTY720 displays less toxicity than the free drug. Flow cytometry and confocal microscopy reveal that NPs are actively internalized mostly through caveolin-mediated endocytosis and macropinocytosis pathways and co-localized with lysosomes. Finally, NP@FTY720 not only exhibits anti-SARS-CoV-2 activity at non-cytotoxic concentrations, but its biological potential for viral infection inhibition is nearly 70 times higher than that of free drug treatment. Based on these findings, the combination of drug repurposing and nanotechnology as NP@FTY720 is presented for the first time and represents a promising frontline in the fight against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Cloridrato de Fingolimode , Sistemas de Liberação de Medicamentos/métodos , Cloridrato de Fingolimode/farmacologia , Humanos , SARS-CoV-2
5.
Adv Protein Chem Struct Biol ; 131: 277-309, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1881585

RESUMO

Molecular Dynamics (MD) is a method used to calculate the movement of atoms and molecules broadly applied to several aspects of science. It involves computational simulation, which makes it, at first glance, not easily accessible. The rise of several automated tools to perform molecular simulations has allowed researchers to navigate through the various steps of MD. This enables to elucidate structural properties of proteins that could not be analyzed otherwise, such as the impact of glycosylation. Glycosylation dictates the physicochemical and biological properties of a protein modulating its solubility, stability, resistance to proteolysis, interaction partners, enzymatic activity, binding and recognition. Given the high conformational and compositional diversity of the glycan chains, assessing their influence on the protein structure is challenging using conventional analytical techniques. In this manuscript, we present a step-by-step workflow to build and perform MD analysis of glycoproteins focusing on the SPIKE glycoprotein of SARS-CoV-2 to appraise the impact of glycans in structure stabilization and antibody occlusion.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Glicoproteínas , Humanos , Simulação de Dinâmica Molecular , Polissacarídeos/química , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
J Oral Microbiol ; 14(1): 2043651, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1713457

RESUMO

BACKGROUND: The SARS-CoV-2 infections are still imposing a great public health challenge despite the recent developments in vaccines and therapy. Searching for diagnostic and prognostic methods that are fast, low-cost and accurate are essential for disease control and patient recovery. The MALDI-TOF mass spectrometry technique is rapid, low cost and accurate when compared to other MS methods, thus its use is already reported in the literature for various applications, including microorganism identification, diagnosis and prognosis of diseases. METHODS: Here we developed a prognostic method for COVID-19 using the proteomic profile of saliva samples submitted to MALDI-TOF and machine learning algorithms to train models for COVID-19 severity assessment. RESULTS: We achieved an accuracy of 88.5%, specificity of 85% and sensitivity of 91.5% for classification between mild/moderate and severe conditions. When we tested the model performance in an independent dataset, we achieved an accuracy, sensitivity and specificity of 67.18, 52.17 and 75.60% respectively. CONCLUSION: Saliva is already reported to have high inter-sample variation; however, our results demonstrates that this approach has the potential to be a prognostic method for COVID-19. Additionally, the technology used is already available in several clinics, facilitating the implementation of the method. Further investigation using a larger dataset is necessary to consolidate the technique.

7.
J Clin Lipidol ; 15(6): 796-804, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1487791

RESUMO

BACKGROUND: Besides the well-accepted role in lipid metabolism, high-density lipoprotein (HDL) also seems to participate in host immune response against infectious diseases. OBJECTIVE: We used a quantitative proteomic approach to test the hypothesis that alterations in HDL proteome associate with severity of Coronavirus disease 2019 (COVID-19). METHODS: Based on clinical criteria, subjects (n=41) diagnosed with COVID-19 were divided into two groups: a group of subjects presenting mild symptoms and a second group displaying severe symptoms and requiring hospitalization. Using a proteomic approach, we quantified the levels of 29 proteins in HDL particles derived from these subjects. RESULTS: We showed that the levels of serum amyloid A 1 and 2 (SAA1 and SAA2, respectively), pulmonary surfactant-associated protein B (SFTPB), apolipoprotein F (APOF), and inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) were increased by more than 50% in hospitalized patients, independently of sex, HDL-C or triglycerides when comparing with subjects presenting only mild symptoms. Altered HDL proteins were able to classify COVID-19 subjects according to the severity of the disease (error rate 4.9%). Moreover, apolipoprotein M (APOM) in HDL was inversely associated with odds of death due to COVID-19 complications (odds ratio [OR] per 1-SD increase in APOM was 0.27, with 95% confidence interval [CI] of 0.07 to 0.72, P=0.007). CONCLUSION: Our results point to a profound inflammatory remodeling of HDL proteome tracking with severity of COVID-19 infection. They also raise the possibility that HDL particles could play an important role in infectious diseases.


Assuntos
COVID-19/sangue , COVID-19/patologia , Lipoproteínas HDL/sangue , Adulto , Apolipoproteínas/sangue , HDL-Colesterol/sangue , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Proteômica , Proteína Amiloide A Sérica/metabolismo , Triglicerídeos/sangue
8.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: covidwho-1287272

RESUMO

Aptamers are single-stranded DNA or RNA molecules which are submitted to a process denominated SELEX. SELEX uses reiterative screening of a random oligonucleotide library to identify high-affinity binders to a chosen target, which may be a peptide, protein, or entire cells or viral particles. Aptamers can rival antibodies in target recognition, and benefit from their non-proteic nature, ease of modification, increased stability, and pharmacokinetic properties. This turns them into ideal candidates for diagnostic as well as therapeutic applications. Here, we review the recent accomplishments in the development of aptamers targeting emerging viral diseases, with emphasis on recent findings of aptamers binding to coronaviruses. We focus on aptamer development for diagnosis, including biosensors, in addition to aptamer modifications for stabilization in body fluids and tissue penetration. Such aptamers are aimed at in vivo diagnosis and treatment, such as quantification of viral load and blocking host cell invasion, virus assembly, or replication, respectively. Although there are currently no in vivo applications of aptamers in combating viral diseases, such strategies are promising for therapy development in the future.

9.
Life Sci Alliance ; 4(8)2021 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1282795

RESUMO

SARS-CoV-2 infection poses a global health crisis. In parallel with the ongoing world effort to identify therapeutic solutions, there is a critical need for improvement in the prognosis of COVID-19. Here, we report plasma proteome fingerprinting that predict high (hospitalized) and low-risk (outpatients) cases of COVID-19 identified by a platform that combines machine learning with matrix-assisted laser desorption ionization mass spectrometry analysis. Sample preparation, MS, and data analysis parameters were optimized to achieve an overall accuracy of 92%, sensitivity of 93%, and specificity of 92% in dataset without feature selection. We identified two distinct regions in the MALDI-TOF profile belonging to the same proteoforms. A combination of SDS-PAGE and quantitative bottom-up proteomic analysis allowed the identification of intact and truncated forms of serum amyloid A-1 and A-2 proteins, both already described as biomarkers for viral infections in the acute phase. Unbiased discrimination of high- and low-risk COVID-19 patients using a technology that is currently in clinical use may have a prompt application in the noninvasive prognosis of COVID-19. Further validation will consolidate its clinical utility.


Assuntos
COVID-19/diagnóstico , Aprendizado de Máquina , Proteoma/metabolismo , Proteômica/métodos , SARS-CoV-2/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adulto , Idoso , Biomarcadores/sangue , COVID-19/epidemiologia , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Prognóstico , Reprodutibilidade dos Testes , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade , Proteína Amiloide A Sérica/análise
10.
Cytometry A ; 97(9): 872-881, 2020 09.
Artigo em Inglês | MEDLINE | ID: covidwho-656632

RESUMO

Malaria is a threat to human mankind and kills about half a million people every year. On the other hand, COVID-19 resulted in several hundred thousand deaths since December 2019 and remains without an efficient and safe treatment. The antimalarials chloroquine (CQ) and its analog, hydroxychloroquine (HCQ), have been tested for COVID-19 treatment, and several conflicting evidence has been obtained. Therefore, the aim of this review was to summarize the evidence regarding action mechanisms of these compounds against Plasmodium and SARS-CoV-2 infection, together with cytometry applications. CQ and HCQ act on the renin angiotensin system, with possible implications on the cardiorespiratory system. In this context, flow and image cytometry emerge as powerful technologies to investigate the mechanism of therapeutic candidates, as well as for the identification of the immune response and prognostics of disease severity. Data from the large randomized trials support the conclusion that CQ and HCQ do not provide any clinical improvements in disease severity and progression of SARS-CoV-2 patients, as well as they do not present any solid evidence of increased serious side effects. These drugs are safe and effective antimalarials agents, but in SARS-CoV-2 patients, they need further studies in the context of clinical trials. © 2020 International Society for Advancement of Cytometry.


Assuntos
Antimaláricos/uso terapêutico , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Cloroquina/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Animais , Antimaláricos/efeitos adversos , Antivirais/efeitos adversos , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Cloroquina/efeitos adversos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citometria de Fluxo , Interações entre Hospedeiro e Microrganismos , Interações Hospedeiro-Parasita , Humanos , Malária/diagnóstico , Malária/imunologia , Malária/parasitologia , Pandemias , Plasmodium/imunologia , Plasmodium/patogenicidade , Pneumonia Viral/diagnóstico , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Resultado do Tratamento , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA